The Yeo-Johnson transformation is a flexible transformation that is similiar
to Box-Cox, boxcox_trans()
, but does not require input values to be greater
than zero.
Details
The transformation takes one of four forms depending on the values of y
and \(\lambda\).
\(y \ge 0\) and \(\lambda \neq 0\) : \(y^{(\lambda)} = \frac{(y + 1)^\lambda - 1}{\lambda}\)
\(y \ge 0\) and \(\lambda = 0\): \(y^{(\lambda)} = \ln(y + 1)\)
\(y < 0\) and \(\lambda \neq 2\): \(y^{(\lambda)} = -\frac{(-y + 1)^{(2 - \lambda)} - 1}{2 - \lambda}\)
\(y < 0\) and \(\lambda = 2\): \(y^{(\lambda)} = -\ln(-y + 1)\)
References
Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. http://www.jstor.org/stable/2673623